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ASYMPTOTIC AN~,YSIS OF INVISCID PERTURBATIONS 

IN A SUPERSONIC BOUNDARY LAYER 

V. R. Gushchin and A. V. Fedorov UDC 532.526 

Inviscid perturbations play an important role in the linear theory of stability of 
supersonic boundary layers. These perturbations are described by nonsteady linearized Euler 
equations [i, 2]. In numerical calculations conducted in [3] for inviscid two-dimensional 
perturbations in a plane-parallel boundary layer on a thermally insulated plate, it was found 
that for incoming flows with a Mach number M ~ 3 , other modes besides the first unstable 
mode are manifest. The number of modes increases rapidly with an increase in M, the short- 
wave (high-frequency) part of the spectrum being filled here. It was found in experiments 
[4] that the second mode begins to dominate the first mode in the boundary layer on a cone 
for M ~ 56 . The author of [5] recorded unstable high-frequency perturbations in super- 
sonic flow about a cone. In [I], it was suggested that these disturbances are associated 
with ,the third and higher modes. The question of the role of higher modes in the agitation 
of a supersonic boundary layer has not yet been resolved. In connection with this, it is 
interesting to study their properties both theoretically and experimentally. 

Here, we perform an asymptotic analysis of inviscid perturbations in a shortwave approx- 
imation. We find the dispersion relation andleigenfunctions for neutral modes with large 
numbers. Numerical calculatlons are performed to obtain the stability characteristics for 
the first four modes in a plane-parallel boundary layer with M = 8. It is shown that the 
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neutral solutions obtained by direct calculation agree well with the asymptotic theory begin- 
ning with the mode number n 2 3. It is concluded on the basis of the numerical and asympto- 
tic analyses that an increase in n is accompanied by a rapid decrease in the growth incre- 
ments and that, in the limit, inviscid perturbations become neutral free oscillations of an 

acoustic nature. 

i. We will examine laminar flow in a supersonic plane-parallel boundary layer of a per- 
fect gas. The y axis is directed along a normal to the surface in the flow, the x axis is 
directed downflow, and the z axis coincides with the transverse direction. The coordinates 
x, y, and z are referred to the characteristic length L, which is commensurate with the thick- 
ness of the boundary layer. It is assumed that, in the undisturbed flow, the normal and 
transverse components of velocity are equal to zero, while pressure is constant. The pro- 
files of the x-components of velocity U(y) and temperature T(y) are made dimensionless with 
respect to the velocity U~ and temperature T~ of the incoming flow. 

A small nonsteady perturbation of the formG(y)exp(iax + iBz -- iwt) is superimposed on 
the main flow, where a and B are the wave numbers in the x- and z-directions; ~ is the fre- 
quency, referred to U~/L; G = (u, v, w, p, 0) is a vector function whose components describe 
the amplitude of the perturbation of the x-, y-, and z-components of velocity, pressure, and 
temperature, respectively. To find the free vibrations, we impose the condition of decay 
at y ~ = and impermeability at y = 0 on the perturbation. In the inviscid limit, the linear- 
ized equations for the amplitude G can be reduced to a second-order equation for the pressure 
perturbation p(y). This equation, together with the boundary conditions, constitutes the 

boundary-value problem [2] 

\ u - c ' - -  P ' +  r p = O, (0) = O, 

p(~--~O, y - ' ~ .  

Here • = | _~ ~2/== ; c = w/a is the phase velocity. The imaginary part of the phase velocity 
ci determines the increments of growth (c i > 0) or decay (c i < 0) of free oscillations of 

the boundary layer. 

We will study neutral subsonic perturbations for which c is a real quantity satisfying 
the condition l--x/M<c<l ~ ~iM. Using the method of combinable asymptotic expansions, 
we analyze shortwave perturbations corresponding to the limit a § ~, M > 1 is fixed. The 
structure of the solutions of boundary-value problem (i.i) is determined by the position of 
the singular point Yc (U(yc) = c) and the turning points Ya, which satisfy the equation 

M~[U(ya) _ c]~/T(ya) _ • = O. (1.2) 

The singular point Yc is the coordinate of the critical layer. The physical significance of 
the turning points Ya is best understood by using the example of a plane wave (• = I). 
Then (1.2) can be written in the form U(y a) = c • a(y a) (a is the local speed of sound, 
referred to U=). It is evident that, at the turning points, the velocity of the flow rela- 
tive to an observer moving with the phase velocity of the perturbation is equal to the speed 
of sound. Thus, Ya are often called acoustic points [2]. 

Figure 1 shows the structure of Characteristic regions of change of the solution for 
subsonic perturbations with the phase velocity i--• In the neighborhood of the 
turning point Ya (U(Ya) = c--• , we distinguish a layer with the characteristic 

" ~ ~ -273 A layer With the scale 6 c ~ a -~ is formed near the critical point. The sca• 0 a a . 
layers are separated by regions i, 2, and 3 with the scale tO(l). 
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Let us perform the transformation p(y) = T-I/2(U- c)u(y). 
the form 

u" + ~[q(y) + r --- O, u'(O) = O, u(y) - +  O, y --,- oo, 

q(Y) = M 2 ( U  - -  c)~/T - -  x ~, q~(y) = T ' ~ / 4 T  ~ - -  2 U ' - / ( U  - -  c) ~ .-}- ( U ' T ) ' / T ( U  - -  e) - -  T " / 2 T .  

In regions i, 

(0 < y < y=, q>0) 

2, and 3, WKB-expansions [6] are valid: 

Then system (i.i) takes 

[ ( ' ! )  )] ,,, (y) = : * :"  C, co~ ~, VTay +C,~in o, S V ~ a y  (t+o(~-')); 
k Y 

y )] [ V-----qdv (i + 0 ( : 4 ) ;  
Va 

( g ~ < y < y ~ ,  q < O )  

(y,< y < oo, q < O )  

r ( ) u3 (g) = ( - -  q) - ' / '  E ,  exp  c~ S g~---"qdy 
L \ Vc " 

(1.3) 

(1.4) 

(1.5) 

( 1 . 6 )  

In the neighborhood of a turning point, we change over to the internal variable ~ = 

= d u/d~ [~ + ( _ q : ) , / 3 ( g _ y ~ ) = ~ l a  ( q l  q ' ( y a ) < O )  T h e n  ~ =2 _ O(~-2/S)lu = O. 

I n  t h e  p r i n c i p a l  a p p r o x i m a t i o n ,  t h e  s o l u t i o n  i s  e x p r e s s e d  t h r o u g h  t h e  A i r y  f u n c t i o n  

u(~) = B,A~(D + B,B~(~). 

The following asymptotic solutions are valid on the boundaries of the transitional layer 
( ~ § 1 7 7  

A~(~)~ 2~,/2p/4 , Bi(D N .~,(2p/4 ' ~-- , .+oo,  

sin 7 + cos ( _  ~)3/, + 
Ai (D N ~t/2 ( _  ~),/4 , B~ (~) --, ~?., ( _  ~: /4  , ~ - - ,  - -  oo. 

In the critical layer with the internal variable ~ = • Yc) , we have 

dp [I+0(~-2)]p=0. In the principal approximation 
dn 

p = D.,0 ] - -  l )e ' ]  + D2(r! "-k t ) e - ' k  

[71 
(1.7) 

,~n, df2P --  [2  + 0 (r " 

(1.8) 

If we combine solutions (1.4), (1.7), and (1.5) between zones i, a, and 2, we find the 
_, u/6 _-,/6_-i/2 ]/2 

relationship between the coefficients Cj, A j, Bj: C1.2 ----- (-- qa! ~ ~t T(B* q- B@, A,-~- 
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: (-- q'a)I/e(z-'/'n-'/2B2, A~=(--q'a)~/Sa-I/6~-~/2B1/2 Combining solutions (1.5), (1.8), and (1.6) 

between zones 2, c, and 3 leads to the relations 

Y= 

D 1 , 2 = a - l T - ~ l l 2 U ' e e x p ( •  D l , , = a  1c ~ 1,2, = 
Pa 

( ro = r (yo), = u '  (yo)). 

Satisfying the boundary conditions, we obtain the dispersion relation 

~-+~m .m.-+ oo. cos a ] / ' q d y +  = 0 ,  a m =  ~a 

o 
- -  -- x 2 dy 

0 

(1.9) 

The critical layer is absent for subsonic oscillations with the phase velocity I < c < 
i H- x/M . In this case, we can construct an expansion which is uniformly valid within the 

regions i, a, and 2 [6]. We represent the solution in the form 

(U) = e~ (y) w ( ~ t ~  (m) + =-~/~c~ (y) w' (~/~ @), 
C , =  ~ ~-nA.(Y), C z =  ,~ ~-nB"(Y)" 

~ 0  n ~ O  

Here ~(y), An, B n are unknown functions; w(t) is the solution of the Airy equation w'' -- 
tw = 0. In the principal approximation, we find the solution which decays at y + =: u(~) = 

P 

~ll4(--q)-114CoAi(~ ),(2/3)~s12=a~ V'--qdy (Co is a constant). Satisfying the boundary condition 
Pa 

u'(0) = 0, we obtain dispersion relation (1.9). 

2. The solutions constructed above indicate that shortwave free oscillations in a super 
sonic boundary layer have the following properties. Acoustic quasiwaves are formed in region 
1 between the turning point and the wall. The quasiwaves are reflected from the boundaries 
with a coefficient equal to unity. The critical layer does not affect the dispersion rela- 
tion in the principal approximation. Instead, it leads only to distortion of the eigenfunc- 
tion p(y), changing the sign of the pre-exponential multiplier. It follows from Eq. (1.9) 
that, in the principal approximation, shortwave modes are neutral for the entire range of 
phase velocities examined. This is due to the fact that the critical layer, being a source 
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of inviscid instability, weakly affects the free oscillations in accordance with an exponen- 
tial law. An increase in m should be accompanied by a rapid decrease in the growth incre- 
ments ci, so that unstable modes will change into neutral oscillations of the acoustic type. 
This conclusion was confirmed by numerical calculations performed for a bounary layer on 
a thermally insulated plate in a gas flow with the adiabatic exponent y = 1.4 and the Prandtl 
number 0.72. Figure 2 shows the time increments m i = Im(m) of two-dimensional perturbations 
(• I) in relation to the wave number a for the first four modes. The modes are numbered 
in accordance with [3]. The value of n corresponds to the number of the curve and is connec- 
ted with m in (1.9) by the condition n = m + 2. The calculation was performed for M = 8 and 
a temperature on the external boundary of the boundary layer T= = 311 K. It is evident that, 
beginning with n = 3, the increments decrease sharply. For the fourth mode, the maximum 
values mi = 1.9"10 -5 nearly correspond to a neutral perturbation. Thus, as regards shortwave 
disturbances, a supersonic boundary layer exhibits the properties of an acoustic waveguide. 
The boundaries of the waveguide are the layer near the acoustic point and the surface in the 
flow. 

To check the validity of the asymptotic theory, we compared the free oscillations of 
the fourth mode with the results of a direct numerical calculation. Figure 3 shows distri- 
butions of the amplitude of pressure Re(p(y)) normalized with the condition Ip(O)I = i. The 
coordinate y is made dimensionless with respect to L = (v=x*/U~) I/2, where v= is the kine- 
matic viscosity and x* is the distance from the leading edge of the plate to the section in 
which the boundary layer is being examined. Curve 1 corresponds to the function calculated 
numerically for c = 0.959, a = 0.511 and 2 and was obtained from the asymptotic solution for 
the same phase velocity. The function q(y) is shown on the left, and the turning point and 

critical point are indicated. 

Figure 4 shows the relations mr(a) calculated from the dispersion relation (1.9) for 
n = 3-1J (solid lines). The x's show results of the numerical calculations, while the 
dashed lines show the limiting phase velocities c = 1 • I/M. Beginning with n ~ 3, the 
asymptotic theory agrees satisfactorily with the direct numerical calculation. 

It should be noted that the above asymptotic relations can be used as an initial approx- 
imation for calculations of eigenfunctions and eigenvalues of higher modes with allowance 
for ~iscosity. They also make it possible to perform simple approximate calculations of the 

characteristics of inviscid shortwave perturbations. 

3. To study certain properties of the dependence of the eigenvalues on the wave number 
m(a), we analyze the group velocity ~m/~. By making the substitution p=~l, ~i= ~ , we 

reduce (i.I) tO a system of second-order equations 

~ (o~)  = (p~ (o)  = o ,  
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T' 2U' 
a =  T U - - c '  

[M2 ( U _  c) ~ ] (3.1) 
b = ~2 . • 

T 

D e t e r m i n i n g  t h e  s c a l a r  p r o d u c t  o f  two v e c t o r  f u n c t i o n s  (A, B) = S(A~BI + A,B~)dy , we 
0 

o b t a i n  t h e  c o n j u g a t e  p r o b l e m  
, ' ,  = ~ , ,  ,;~ = - -  r  + a , , ,  Cz (oo) = r (0) = 0. ( 3 . 2 )  

The b a r  a b o v e  t h e  s y m b o l s  i n  ( 3 . 2 )  d e n o t e s  c o m p l e x  c o n j u g a t i o n .  D i f f e r e n t i a t i n g  ( 3 . 1 )  w i t h  
respect to the parameter a, we have 

i p 
~-- ~,~ = O, ~,~ + a~,= + b~x==--a=~, - b=%, ~a= (oo) =~=(0)=0 

(3.3) 
(~a,~ = O~l I&z, ~ ,  = O~lOa). 

System (3.2) constitutes an inhomogeneous boundary-value problem with homogeneous boun- 
dary conditions. Its solution requires that the right side be orthogonal to the solution of 

the conjugate problem S [a=~2~ b=~l]~2dy = 0. From this, we obtain the following relation 
O 

for the group velocity 

(U--c)  z ~2~2 + M2 T ~2 ~ 1 ~  2 dy 

a__~= (3.4) 

(U--  c) 2 %*z + r a ~ r  dy 
0 

We designate ~ = ~2. Then system (3.2) can be written in the form 

~ " - - a , ' +  ( b -  a')~ = 0 , ~ ( ~ ) =  O. (3.5) 

It is easily shown that if the direct eigenvalue problem is solved, then any solution of 
problem (3.5) will correspond to the boundary condition on the wall ~(0) = 0. ~king the 
substitution ~(y) = TI/2(U -- c)-~u(y), we find that the function u satisfies system (1.3). 
~us, we have established the following connection between the pressuce perturbation and the 
function ~:~(y) = p(y)T/(U -- c) 2. Using this relation, we have the asymptote of Eq. (3.4) 

with large aM: 

.[  UP2 
U--c dy 

OoJ o 

0 

~- 0 (aM) -1, ~M -+ oo. (3.6) 

Let us examine the behavior of m(a) with real wave numbers a. For a phase velocity 
c r > i, the critical layer is absent and, as was shown in [8], ci = O. In this case, Im 
p(y) = 0, and it follows from (3.4) and (3.6) that 0 < ~mr/~a < i. An increase in a is 
accompanied by an increase in the real part ~r and a decrease in phase velocity, since 
3c/~a = (3m/~a -- c)/a < 0. Thus, the perturbation is neutral between the points al (c = 
i ~ x/M) and a2 (c = i). At the point ax, the eigenvalue of the discrete spectrum com- 
bines with the branch of the continuous spectrum determined by the condition c>i 4-• 
The critical layer is present in the boundary layer for a > a2 (c r < i), so that instability 
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does occur mi > 0. It follows from the numerical calculations that at a certain value ~> 
~ {l--x/M<c(~<l) , a neutral regime ~i = 0 is again attained. In this case the 
expression for group velocity has the form 

p~' ~z "~ p ~ c p2 
UP2 dy dy ~- l~ ~ p~dy 

~__.~ = . o U~ o . ( 3 . 7 )  
acz 

(i ; p2 Pc 

~-~7du + u'" 
~'0 / c 

Here, all of the integrals are taken in the sense of the eigenvalue. The critical point Yc 
is circumvented below in the complex plane y. It follows from (3.7) that for ~mr/~a < i, 
3~i/3a < 0 at mi = 0, 0 < Cr < i. Thus, the graph of ~i(a) at point a~ has a negative slope. 

At a > a4 (Cr(=4) = | ~x/M), a second turning point appears near the upper boundary of 
the boundary layer, and the pressure pulsations in the external flow oscillate with respect 
to y. Figure 5 shows the quantitative relation ~i(a) and the characteristic points al, a2, 
a3, a,. These results agree with the numerical calculation in Fig. 2. Using the definitions 
of the points al and a2 and dispersion relation (1.9), it is easy to calculate the boundaries 
of the neutral and unstable regions for each specific case. 
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